Analysis of Longitudinal and Survival Data: Joint Modeling, Inference Methods, and Issues
نویسندگان
چکیده
1 Department of Statistics, The University of British Columbia, Vancouver, BC, Canada V6T 1Z2 2 Department of Mathematics and Statistics, York University, Toronto, ON, Canada M3J 1P3 3 Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1 4 Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
منابع مشابه
Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملمدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کاملکاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی
Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...
متن کاملBayesian nonparametric mixed-effects joint model for longitudinal-competing risks data analysis in presence of multiple data features.
Recently, the joint analysis of longitudinal and survival data has been an active research area. Most joint models focus on survival data with only one type of failure. The research on joint modeling of longitudinal and competing risks survival data is sparse. Even so, many joint models for this type of data assume parametric function forms for both longitudinal and survival sub-models, thus li...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014